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Abstract 
 

Alloy beams and beam like elements are principal constituents of many structures and widely used in high speed machinery, 

aircraft and light weight structures. Crack is a damage that often occurs on members of structures and may cause serious 

failures of structures. In this research the natural frequency of a cracked cantilever beam is investigated by finite element 

method by using of ANSYS program with different crack depth and location effect. The beam material studied is aluminum 

alloy, titanium alloy, copper alloy and magnesium alloy. A comparison is made between these alloys and conclude optimized 

result between them. The increase of the beam length result in a decrease in the natural frequencies of the composite beam 

and also shows that an increase of the depth of cracks lead to a decrease in the value of natural frequencies. .       
                © 2016 ijrei.com. All rights reserved 
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1. Introduction 

 

All structures are subjected to degenerative effects that may 

cause initiation of structural defects such as cracks which, 

as time progresses, lead to the catastrophic failure or 

breakdown of the structure. Thus, the importance of 

inspection in the quality assurance of manufactured products 

is well understood. Cracks or other defects in a structural 

element influence its dynamical behavior and change its 

stiffness and damping properties. Consequently, the natural 

frequencies of the structure contain information about the 

location and dimensions of the damage [1]. 

The dynamic response-based damage detection method 

attracts most attention due to its simplicity for 

implementation. This technique makes use of the dynamic 

response of structures which offers unique information on 

the defects contained with these structures. Changes in the 

physical properties of the structures due to damage can alter 

the dynamic response, such as the natural frequency and 

mode shape. These parameter changes can be extracted to 

predict damage detection information, such as the presence, 

location, and severity of damage in a structure. The natural 

frequency provides the simplest damage detection method 

since damage tends to reduce the stiffness of the structure. 

Therefore, a reduction of natural frequency may indicate the 

existence of damage in the structure. However, the natural 

frequency is a global feature of the structure, from which the 

location of the damage is difficult to determine. The modal 

parameters (e.g., the mode shape and flexibility), which can 

capture the local perturbation due to damage are used in 

order to locate damage [2]. A crack may reduce the flexural 

rigidity of a column and its load carrying capacity .From the 

reduced flexural rigidity, the deflection and the load 

carrying capacity of a notched column may be calculated 

.The bending at the crack section of a column causes a 

tensile mode crack up stress field, which is characterized by 

a stress intensity factor. When the stress intensity factor at a 

crack tip exceeds the fracture toughness of the material, 

fracture occurs. The fracture toughness of cracked column 

is studied [3]. In many circumstances material flaws are 

present in structures made of anisotropic composites .Such 

cracks can be detected by vibrational analysis based on the 

variation of the local compliance as the crack gradually 

grows. The significance of this term on the local flexibility 

of a centrally cracked plate is discussed by presenting a 

numerical example for a graphite fiber for a reinforced 
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polyamide composite. The prospect of crack diagnosis of 

composite components on the basis of coupled deformation 

modes due to the crack presence is signified by analyzing 

the compliance matrix of a prismatic beam containing a 

central crack [4]. A crack in a structural element introduces 

a significant local flexibility which enhances the instability. 

Buckling of a edge notched beam is studied for isotropic and 

anisotropic composites. The local compliance due to 

presence of cracks in anisotropic medium is formulated as a 

function of crack -tip stress intensity factors and the elastic 

constants of the material [5]. The equation of motion & 

associated boundary conditions are derived for a uniform 

Bernoulli-Euller beam containing one single- edge crack. 

The main idea is to use a generalized vibrational principle 

that allows for modified stress, strain, & displacement field 

that enable one to satisfy the compatibility requirements in 

the vicinity of the crack [6]. It was investigated a new beam 

finite element with a single non-propagating one-edge open 

crack located in its mid-length is formulated for the static & 

dynamic analysis of cracked composite beam -like 

structures. The element include two degree of freedom at 

each of the three nodes, a transverse deflection and an 

independent rotation respectively [7]. The Eigen frequencies 

of a cantilever beam, made from graphite fiber reinforced 

polyamide with a transverse one edge non-propagating open 

crack are investigated .Two models of beam are presented.in 

the first model the crack is modelled by a massless substitute 

spring .The flexibility of the spring is calculated on the basis 

of fracture mechanics and the castigiliano theorem. The 

second model is based on the finite element method (FEM) 

[8]. It was investigated that the presence of a crack in a 

structural member introduces a local flexibility that effects 

its vibration response .Moreover the crack will open and 

close in time depending on the rotation and vibration 

amplitude .In this case the system is non-linear [9]. The 

characteristic matrices of a composite beam with single 

transverse fatigue crack are presented. The element 

developed has been applied in analyzing influence of the 

cracked parameters (position and relative depth)and the 

material parameters relative volume and fiber angle)on 

changes in the first four transverse natural frequencies of the 

composite beam made to unidirectional composite material 

[10]. The dynamics of a fixed-three bar with a breathing 

crack in longitudinal vibration is investigated .The crack 

was modelled as a continuous flexibility using the 

displacement field in the vicinity of the crack found with 

fracture mechanics methods[11]. It was investigated that a 

piece-wise linear approach to analyze vibrations of a 

cantilever beam with a 'breathing crack’. Their formulation 

was hybrid frequency-domain/time-domain method. For the 

majority of vibration, the crack section is unambiguously 

either open or closed [12]. The numerical modelling of 

damage and crack propagation in concrete and concrete 

structures has evolved considerably in the past years. In this 

contribution ,a higher  order continuum model is used to 

model the failure behavior of single -edge notched & 

double- edge notched concrete beams loaded in four-point 

shear .The influence of the ratio of the compressive strength 

& the tensile strength is scrutinized and its relation with the 

failure mechanism is investigated [13]. It was analyzed that 

the dynamic behavior of  cracked beam, the effect of crack 

on a structure by comparing the signal in frequency & the 

time domain: and concluded that ,increase in crack depth 

results the increase in amplitude of vibration .Secondly the 

amplitude of low frequency vibration decreases and high 

frequency vibration increases when the location of crack 

increases [14]. The modelling methods of structural 

elements with failures (cracks and delamination) is 

presented. Cracks appear in both isotropic and anisotropic 

materials .Delamination is one of the most important failure 

modes of laminated composite materials. Delamination may 

originate during manufacturing or may be induced during in 

-service loading ,such as by foreign object impact or by 

fatigue common damage in composite materials is matrix-

cracking, fiber-breakage ,fiber-matrix debounding [15]. 

different approaches to crack modelling , and demonstrates 

that for structural health monitoring using low frequency 

vibration based on beam elements are adequate .They also 

addresses the effect of the excitation of  breathing cracks, 

where the beam stiffness is bilinear ,depending upon the 

whether the beam is open or close [16]. The bending free 

vibration of cantilevered composite beams weakened by 

multiple non-propagating part through surface crack is 

presented .Toward determining the local flexibility 

characteristics induced by the individual cracks, the concept 

of massless rotation is applied [17]. 

 

2. Governing Equation 

 

2.1 Structure Analysis 

 

The differential equation of the bending of a beam with a 

mid-plane symmetry (Bij = 0) so that there is no bending-

stretching coupling and no transverse shear deformation 

(εxz=0) is given by 
 

IS11(𝑑4𝜔/𝑑𝜔4) =q(x)     (1) 
 

It can easily be shown that under these conditions if the 

beam involves only a one layer, isotropic material, then  

IS11=EI=Ebh3/12   and for a beam of rectangular cross-

section Poisson’s ratio effects are ignored in beam theory, 

which is in the line with Vinson & Sierakowski (1991). 

In Equation 1, it is seen that the imposed static load is 

written as a force per unit length. For dynamic loading, if 

Alembert’s Principle are used then one can add a term to 

Equation.1 equal to the product mass and acceleration per 

unit length. In that case Equation.1 becomes 

 

IS11d4𝜔(𝑥, 𝑡)/𝑑𝜔4=q(x,t)-𝜌𝐹𝜕2𝜔(𝑥, 𝑡)/𝜕𝑥2  (2) 

 

where ω and q both become functions of time as well as 

space, and derivatives therefore become partial derivatives, 
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ρ is the mass density of the beam material, and here F is the 

beam cross- sectional area. In the above, q(x, t) is now the 

spatially varying time-dependent forcing function causing 

the dynamic response, and could be anything from a 

harmonic oscillation to an intense one-time impact. 

For a composite beam in which different lamina have 

differing mass densities, then in the above equations use, for 

a beam of rectangular cross-section 

 

𝜌𝐹 = 𝜌𝑏ℎ = ∑ 𝜌𝑏(ℎ𝑁
𝑘=1 k-hk-1)   (3) 

 

However, natural frequencies for the beam occur as 

functions of the material properties and the geometry and 

hence are not affected by the forcing functions; therefore, 

for this study let q(x,t) be zero. 

Thus, the natural vibration equation of a mid-plane 

symmetrical composite beam is given by 

 

IS11[d4𝜔(𝑥, 𝑡)/𝑑𝜔4]+𝜌𝐹[𝜕2𝜔(𝑥, 𝑡)/𝜕𝑥2]=0  (4) 

 

It is handy to know the natural frequencies of beams for 

various practical boundary conditions 

In order to insure that no recurring forcing functions are 

close to any of the natural frequencies, because that would 

result almost certainly in a structural failure. In each case 

below, the natural frequency in radians /unit time is given 

as 

𝜔n=𝛼2√(𝐼𝑆11/𝜌𝐹𝐿4)    (5) 

 

Where α2 is the co-efficient, which value is catalogued by 

Warburton, Young and Felgar and once ωn is known then 

the natural frequency in cycles per second (Hertz) is given 

by fn= ωn /2π, which is in the line with Vinson & 

Sierakowski (1991). 

In general, governing equation for free vibration of the beam 

can be expressed as 

 

[K]-𝜔2[M]{q}=0     (6) 
 

Where, K = Stiffness matrix 

M = Mass matrix   , and 

q = degrees of freedom. 

 
2.2 Modal Analysis (Mehdi. H et al [24]) 

 

2.2.1 Damping Matrices 
 

Damping may be introduced into a transient, harmonic, or 

damped modal analysis as well as a response spectrum. The 

type of damping allowed depends on the analysis as 

described in the subsequent sections. 

Transient (Full or Reduced) Analysis and Damped Modal 

Analysis: 

The damping matrix, [C], may be used in transient and 

damped modal analyses as well as substructure generation. 

In its most general form, the damping matrix is composed of 

the following components. 

E

i j

1 1 1

1 1

2 2 1
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      (7) 

Where  

[C] = structure damping matrix, α = mass matrix multiplier, 

[M] = structure mass matrix, β = stiffness matrix multiplier, 

[K] = structure stiffness matrix, Nma = number of materials, 

αim = mass matrix multiplier for material I, [Mi] = portion 

of structure mass matrix based on material I, Nmb = number 

of materials, 

m

j  = stiffness matrix multiplier for material 

j, [Kj] = portion of structure stiffness matrix based on 

material j, Ne = number of elements with specified damping, 

, [Ck] = element damping matrix, Ng = number of elements 

with Coriolis or gyroscopic damping, [Gl] = element 

Coriolis or gyroscopic damping matrix 

Harmonic (Full or Reduced) Analysis: 

The damping matrix ([C]) used in harmonic analyses is 

composed of the following components. 

 

E

i j

1 1
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      (8) 
The input exciting frequency, Ω, is defined in the range 

between ΩB and ΩE via 

ΩB = 2πfB,  

ΩE = 2πfE 

fB = beginning frequency 

fE = end frequency

 Substituting equation (8) into the harmonic response 

equation of motion and rearranging terms yields  

 

 E

j j j m i

2

k 1 2 1

[[K] 2 [K] (2g g )[K ] [C ] [ [M] [M ] [K]

[K ] [C ] [G ]]](u ) F [M]

m

i

m

j j j

i g i

iu

  



        

    

  

     

       (9) 

The complex stiffness matrix in the first row of the equation 

consists of the normal stiffness matrix augmented by the 

structural damping terms given by g, gi, gi
E, and [Cm] which 

produce an imaginary contribution. Structural damping is 

independent of the forcing frequency, Ω, and produces a 

damping force proportional to displacement (or strain). The 

terms g, gi, and gi
E are damping ratios (i.e., the ratio between 

actual damping and critical damping, not to be confused 

with modal damping).  

The second row consists of the usual viscous damping terms 

and is linearly dependent on the forcing frequency, Ω, and 

produces forces proportional to velocity. 
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2.2.2 Mode-Superposition Analysis 

 

 The damping matrix is not explicitly computed, but rather 

the damping is defined directly in terms of a damping ratio 

ξd. The damping ratio is the ratio between actual damping 

and critical damping. The damping ratio 

d

i for mode i is 

the combination of 

2 2

d m

i i i

i

 
   


   

   

(10) 

Where 

ξ = constant modal damping ratio, 
m

i   = modal damping 

ratio for mode shape i (see below), ωi = circular natural 

frequency associated with mode shape i = 2πfi, fi = natural 

frequency associated with mode shape I, α = mass matrix 

multiplier 

The modal damping ratio 
m

i   can be defined for each 

mode directly (undamped modal analyses only).  

Alternatively, for the case where multiple materials are 

present whose damping ratios are different, an effective 

mode-dependent damping ratio 
m

i   can be defined in the 

modal analysis if material-dependent damping is defined 

and the element results are calculated. This effective 

damping ratio is computed from the ratio of the strain energy 

in each material in each mode using 

 

1

1

m

m

N
m s

j j

jm

i N
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
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Where 

Nm = number of materials, 
m

j   = damping ratio for 

material j 

  

T

j

1
( ) [K ]( )

2

s

j iE    

 

Strain Energy contained in mode i for material j, {φi} = 

displacement vector for mode I, [Kj] = stiffness matrix of 

part of structure of material j 

These mode-dependent (and material-dependent) 

ratios , 𝜁𝑖
𝑚will be carried over into the subsequent mode-

superposition or spectrum analysis. Note that any manually-

defined damping ratios will overwrite those computed in the 

modal analysis via equation-11 

 

3. Results and Discussions 

 

In order to check the natural frequency of cantilever alloy 

beam, first we calculate the mechanical properties of Al- 

alloy, Mg-alloy, Ti-alloy and Cu-alloy, like ultimate tensile 

strength, yielding strength.  

In these alloys titanium alloy has a greater ultimate strength 

than the other alloys, whereas magnesium alloy has a lower 

ultimate strength. 

These mechanical properties are fed into ANSYS-14.0 to 

calculate the natural frequency for alloy cantilever beam. 
 

Table 1: Properties of Selected Materials 

 

 
(a) 

 
(b) 

Figure 1: comparison of Mechanical properties (a) tensile yield 

strength, (b) Ultimate tensile strength 
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Strength 

Mpa 

Mg- Alloy 1800 193 255 

Al- Alloy 2770 280 310 

Cu- Alloy 8300 280 430 

Ti- Alloy 4620 930 1070 
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Table 2: Comparison of Natural Frequency with and without 

crack at 50 mm crack location 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Comparison of Natural Frequency with and without 

crack at 100 mm crack location 
 
 

            100mm crack location   

 Alloy             Natural Frequency (Hz) 

  

Mode 

Shape 

without 

crack 

2mm crack 

depth 

4mm crack 

depth 

  1 23.656 23.466 22.729 

  2 93.849 93.573 92.317 

 Cu Alloy 3 147.97 146.63 138.87 

  4 413.25 409.23 390.112 

  5 503.77 504.62 498.01 

  6 571.19 569.27 556.93 

  1 32.503 32.243 31.233 

  2 128.91 128.54 126.81 

 Mg Alloy 3 203.3 201.48 190.86 

  4 567.79 562.3 536.16 

  5 689.43 690.6 681.57 

  6 784.5 781.87 764.36 

  1 29.644 29.408 28.491 

  2 117.55 117.2 115.63 

 Ti Alloy 3 185.41 183.76 174.12 

  4 517.85 512.88 489.4 

  5 626.32 627.39 619.19 

  6 715.21 712.82 696.86 

  1 32.887 32.621 31.592 

  2 130.7 130.11 128.37 

 Al Alloy 3 205.7 203.84 193.01 

  4 574.49 568.88 542.2 

  5 703.12 704.31 695.07 

  6 794.37 790.169 773.97 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 50mm crack location   

 Alloy Natural Frequency (Hz) 

  

Mode 

Shape 

without 

crack 

2mm crack 

depth 

4mm crack 

depth 

  1 23.656 23.176 21.59 

  2 93.849 93.136 90.233 

 Cu Alloy 3 147.97 144.84 134.86 

  4 413.25 404.53 376.32 

  5 503.77 500.35 487.58 

  6 571.19 566.72 549.03 

  1 32.503 31.846 29.675 

  2 128.91 127.94 123.95 

 Mg Alloy 3 203.3 199.02 185.37 

  4 567.79 555.87 517.26 

  5 689.43 684.76 667.3 

  6 784.5 778.38 754.08 

  1 29.644 29.048 27.075 

  2 117.55 116.66 113.02 

 Ti Alloy 3 185.41 181.53 169.13 

  4 517.85 507.04 471.96 

  5 626.32 622.08 606.24 

  6 715.21 709.65 687.51 

  1 32.887 32.217 30.005 

  2 130.7 129.5 125.47 

 Al Alloy 3 205.7 201.33 187.42 

  4 574.49 562.32 522.96 

  5 703.12 698.35 680.49 

  6 794.37 788.13 763.53 
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Table 4: Comparison of Natural Frequency with and without 

crack at 150 mm crack location 

             150mm crack location   

                      Natural Frequency (Hz) 

  

Mode 

Shape 

without 

crack 

2mm 

crack 

depth 

4mm 

crack 

depth 

  1 23.656 23.554 23.234 

  2 93.849 93.713 93.23 

 Cu Alloy 3 147.97 147.09 143.63 

  4 413.25 409.89 398.27 

  5 503.77 503.67 502.53 

  6 571.19 569.99 564.46 

  1 32.503 32.363 31.925 

  2 128.91 128.73 128.07 

 Mg Alloy 3 203.3 202.11 197.37 

  4 567.79 563.19 547.32 

  5 689.43 689.3 687.74 

  6 784.5 782.4 775.27 

  1 29.644 29.517 29.119 

  2 117.55 117.38 116.77 

 Ti Alloy 3 185.41 184.33 180.04 

  4 517.85 513.68 499.28 

  5 626.32 626.2 624.79 

  6 715.21 713.7 706.81 

  1 32.887 32.744 32.297 

  2 130.7 130.31 129.64 

 Al Alloy 3 205.7 204.48 199.64 

  4 574.49 569.8 553.56 

  5 703.12 702.98 701.38 

  6 794.37 792.69 785 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5:  Comparison of Natural frequency for without 

crack 

 

Natural Frequency Without 

Crack  

Mode 

Shape 

Copper 

Alloy 

Mg 

Alloy 

Ti 

Alloy 

Al 

Alloy 

1 23.656 32.503 29.644 32.887 

2 93.849 128.91 117.55 130.7 

3 147.97 203.3 185.41 205.7 

4 413.25 567.79 517.85 574.49 

5 503.77 689.43 626.32 703.12 

6 571.19 784.5 715.21 794.37 

 

Table 6: Comparison of Natural Frequency with 

different crack location at 2 mm crack depth 
 

     Crack                          2mm crack depth 

    location                      Natural Frequency (Hz) 

 

Mode 

Shape 

Cu 

Alloy 

Mg 

Alloy 

Ti 

Alloy 

Al 

Alloy 

  1 23.176 31.846 29.048 32.217 

  2 93.136 127.94 116.66 129.5 

     50mm 3 144.84 199.02 181.53 201.33 

  4 404.53 555.87 507.04 562.32 

  5 500.35 684.76 622.08 698.35 

  6 566.72 778.38 709.65 788.13 

  1 23.466 32.243 29.408 32.621 

  2 93.573 128.54 117.2 130.11 

   100mm 3 146.63 201.48 183.76 203.84 

  4 409.23 562.3 512.88 568.88 

  5 504.62 690.6 627.39 704.31 

  6 569.27 781.87 712.82 790.169 

  1 23.554 32.363 29.517 32.744 

  2 93.713 128.73 117.38 130.31 

     150mm 3 147.09 202.11 184.33 204.48 

  4 409.89 563.19 513.68 569.8 

  5 503.67 689.3 626.2 702.98 

  6 569.99 782.4 713.7 792.69 

 

It can be seen that in every mode shape Cu Alloy has 

minimum natural frequency while Al Alloy has maximum 

natural frequency. To reduce these natural frequencies 

cracks are introduced in different location with different 

crack depth and we analyzed that at 50 mm crack location 

with 4mm crack depth natural frequency has a minimum 

value for all alloys. 
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Now when frequency of alloys are compared with no crack 

and with 9 cracks then It has been observed that frequency 

decreases with number of cracks. 

 
Table 7: Comparison of Natural Frequency with different 

crack location at 4 mm crack depth 

     Crack                        4mm crack depth 

    

location                        Natural Frequency  

     

Mode 

Shape 

Cu 

Alloy 

Mg 

Alloy 

Ti 

Alloy 

Al 

Alloy 

  1 21.59 29.675 27.075 30.005 

  2 90.233 123.95 113.02 125.47 

     50mm 3 134.86 185.37 169.13 187.42 

  4 376.32 517.26 471.96 522.96 

  5 487.58 667.3 606.24 680.49 

  6 549.03 754.08 687.51 763.53 

  1 22.729 31.233 28.491 31.592 

  2 92.317 126.81 115.63 128.37 

   100mm 3 138.87 190.86 174.12 193.01 

  4 390.112 536.16 489.4 542.2 

  5 498.01 681.57 619.19 695.07 

  6 556.93 764.36 696.86 773.97 

  1 23.234 31.925 29.119 32.297 

  2 93.23 128.07 116.77 129.64 

   150mm 3 143.63 197.37 180.04 199.64 

  4 398.27 547.32 499.28 553.56 

  5 502.53 687.74 624.79 701.38 

  6 564.46 775.27 706.81 785 

 

3.1 Natural frequencies for various mode shapes 

 

The modal analysis of the alloy beam is done on ANSYS 14. 

The following are the different mode shapes to produce 

natural frequency in composite beam  

 

 
Figure 2 First mode of vibration 

 

 
 

Figure 3 Second mode of vibration 

 
Figure 4 Third mode of vibration 

 
Figure 5 Forth mode of vibration 

 
Figure 6 Fifth mode of vibration 

 
Figure 7 Sixth mode of vibration 

 

The first mode of vibration is a bending mode In this mode 

shape, the beam is tending to bend about the root section’s 

The analysis shows that the parameter that effect root 

stiffness have a large impact on the first mode of frequency. 

The first mode frequency is also affected by parameters that 

effect tip mass. 

The second mode of vibration is also a bending mode and 

the natural frequency of second mode of vibration is greater 

than the first mode of vibration.  

The third mode of vibration is also bending mode with one 

node formation about the root, the frequency is more than 
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the second mode .the deflection was in the vertical direction. 

The frequency is correspondingly higher due to increased 

stiffness in that direction. 

The fourth mode of vibration is also bending mode with two 

node formation. The frequency of fourth mode shape is 

much higher than the above three modes. 

The fifth mode of vibration is twisting about the root, the 

frequency is affected by tip rotational moment of inertia.  

The frequency of sixth mode shape have the highest 

frequency in all the above mode shapes. 

Mode 1: When the force is applied at right angles to the 

surface of beam. 

Mode 2: When the force is applied vertically & 

horizontally on beam.   

Mode 3: Node formation during free vibrations due to 

forces at right angle to surface. 

Mode 4:  Two node formation during free vibrations of the 

beam. 

Mode 5:  Twisting of beam by fixing one end 

Mode 6:  Natural vibration of the composite beam under 

transverse loading i.e. force acting along the 

width of beam. 
 

4. Conclusion 
 

The mechanical properties of aluminum alloy, magnesium 

alloy, titanium alloy and copper alloy were found by using 

computational method. 

From the above results, following conclusions can be made 

 Table 1 shows the comparison between the mechanical 

properties like tensile yield strength, tensile ultimate 

strength of all four alloys. 

 From Figure-1 it can be concluded that the tensile 

strength of Ti alloy is highest amongst all alloys taken 

and has a minimum deflection comparison to all alloy 

 The natural frequency decreases with increasing crack 

depth. 

 From table 2-7 it has been observed that natural 

frequency decreases when number of cracks increases. 
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